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Abstract—Real-time high-accuracy localization has a wide
range of applications in scenarios, such as pedestrian naviga-
tion, emergency rescue, and vehicle networks. In these conditions,
the measurement models are often nonlinear, and traditional
Kalman and particle filters cannot provide long-time high-
precision location-based services. To this end, we propose a
Gaussian condensation filter (GCF) algorithm that can achieve
high-accuracy localization in a harsh environment. However, aim-
ing at the degradation of sampling points in target tracking based
on the GCF, this article proposes a GCF algorithm based on
particle flow which transfers the sample points satisfying the
prior distribution of the target state to the posterior distribution,
thereby improving the practical accuracy of the target-tracking
algorithm. Further, to enhance the information fusion in the coop-
erative network, we propose a multitarget cooperative tracking
algorithm to accomplish spatially constrained timing filtering
of state information for improving the error correction of the
target nodes on timing estimation. Numerical simulations are con-
ducted to determine the effectiveness of our proposed algorithms.
Compared with the GCF, its positioning accuracy is improved
to 44.6%. Compared with the Gaussian condensation algorithm
based on particle flow (PF), the practical accuracy of the GCF
algorithm based on cooperative constrained PF in multitarget
tracking is improved to 58.1%.

Index Terms—Constrained optimization, cumulative error,
Gaussian mixture distribution, multitarget tracking, nonlinear
filter.

I. INTRODUCTION

REAL-TIME high-accuracy localization is a crucial com-
ponent of the Internet of Things (IoT) applications, such

as pedestrian navigation, search and rescue, and autonomous
vehicles. In quite a few scenarios, the global positioning
system (GPS) can provide sufficient accurate positioning
technical support for general positioning requirements [1].
However, in harsh and complex industrial environments, GPS-
based positioning technology is also challenging to meet
practical application needs. Currently widely used wireless
positioning technologies, such as time difference of arrival
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(TDOA) [2], angle of arrival (AOA) [3], received signal
strength indication (RSSI) [4], and time of arrival (TOA) [5],
can provide a real-time accurate location estimation in areas
that GPS signals cannot cover, but most require predeploy-
ment of base stations. The inertial navigation system based
on the inertial measurement unit (IMU) can perform posi-
tion estimation through its sequence data without the need
to deploy additional communication base stations. However,
the shortcoming of the IMU method is the accumulated error,
which cannot provide long-term high-precision position esti-
mation [6]. To overcome these limitations, Xu et al. [7]
proposed a fusion method based on IMU/TOA, combining the
characteristics of IMU measurement with instantaneous high
precision and the attributes of TOA without accumulated error,
which is a long-term and large-distance span.

The Bayesian filter is widely considered for multitarget
tracking [1], [5]. It is a recursive filter in which each mea-
surement is processed in turn, and the posterior distribution of
the current state is computed based on the current measure-
ments and the posterior distribution calculated at the previous
state. It resembles an ordinary recursive filter (e.g., a Kalman
filter) for single-target tracking. Still, there are two significant
differences: 1) on the dynamic model aspect, the filter must
compute the joint posterior of all target states, whose complex-
ity grows without bound over time and 2) on the measurement
model aspect, the likelihood function factors conditional on the
association variable, and so the exact update step must sum
over exponentially many possible associations. To reduce the
computational complexity of multitarget tracking, the dynamic
model is generally considered a Gaussian model [8], [9]. Even
though based on the non-Gaussian hypothesis, it generally
needs to reduce the dimensionality of the multitarget-tracking
process by mapping it to Gaussian space for computation
due to the complexity of data association [10]. However, the
measurement model issue remains unsolved.

Most of the measurement models considered in the existing
literature are also based on the Gaussian model assump-
tion [9], [11]. However, in practical applications, the likelihood
between different measurement pairs could differ significantly
in cooperative target-tracking networks, generally resulting in
a nonlinear and non-Gaussian mixture for the overall likeli-
hood functions [5]. Due to the data association uncertainty,
the filter step cannot be performed independently for the indi-
vidual targets. Rosato et al. [12] proposed a particle filter based
on Monte Carlo sampling, which only has good adaptability
to the single-target tracking system of the nonlinear model but
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does not consider multitarget positioning. Therefore, there are
still challenges in implementing a nonlinear fusion localization
scheme in the measurement model.

You et al. [13] proposed the unscented Kalman filter (UKF),
which can solve the problem of non-Gaussian random noise to
a certain extent based on the approximate posterior distribu-
tion of deterministic sampling points. Before the introduction
of the particle filter in the 1990s, Kalman-like filters have
been widely used by default to solve many significant prob-
lems. Wang et al. [14] proposed a particle filter based on
Monte Carlo sampling, which uses the mean value of a set
of weighted particles to estimate the mean and covariance of
the state, approximating the posterior distribution of the region
containing the saliency probability. Still, it faces the problem
of particle degradation and depletion in the resampling pro-
cess. For low-dimensional problems, particle filter can achieve
high-precision localization with the same complexity as EKF,
but for high-dimensional issues [15], high complexity is often
required. Aiming at the nonlinear problem of the measurement
model, this article proposes a Gaussian condensation filter
(GCF), which uses a Gaussian mixture model to approximate
the posterior probability distribution.

To effectively suppress the cumulative error effects of
autonomous navigation and positioning, network collaborative
optimization techniques can be used to improve position-
ing accuracy. Facing the self-organizing and highly dynamic
environment, collaborative technology can fuse the sensory
information collected by individuals to obtain information
gained among group target nodes. Specifically, in a coop-
erative network, a single target node receives position
information from inertial measurement equipment and gener-
ates autonomous ranging information with other nodes in the
wireless network. Based on this mutual information, they coor-
dinate to complete the optimal estimation of target positioning.
Mobile node devices only need to embed inertial measurement
and ranging sensors to achieve multitarget co-location based
on their inertial and spatial distance measurements. When we
consider static space optimization, we only pay attention to the
influence of the space measurement at the current moment on
the optimization of the state estimation, and the constraints of
the state can be obtained based on the distance measurement
outside the node. The posterior state means under the dis-
tance constraint can be obtained in standard Bayesian methods.
Fan et al. [16] proposed a co-localization technique that uti-
lizes spatial location information to optimize tracking multiple
target locations. However, the above-mentioned static distance
fusion optimization method must deploy an external base sta-
tion. The wireless signal is prone to non-line-of-sight occlusion
(NLOS), which causes significant errors. In the research of
this article, we apply the state mean value after distance con-
straint optimization to the filter estimation process of the time
series and realize the cooperative target tracking that integrates
the measurement information in the spatiotemporal domain to
obtain the filter estimation that is closer to the actual position.

In summary, our main contributions are as follows.
1) Aiming at the nonlinear measurement model problem

faced by the multitarget tracking, a GCF algorithm
is proposed, which uses a Gaussian mixture model

Fig. 1. Schematic of multitarget cooperative tracking: the internal inertial
measurement of the target node is represented as a one-way arrow in the
figure, and the external distance measurement is represented as a two-way
arrow.

to approximate the actual posterior probability den-
sity function and can achieve high-precision positioning
estimation in harsh environments.

2) Aiming at the problem of sampling point degradation in
target tracking implemented by GCF, this study intro-
duces particle flow (PF) into state estimation application
scenarios. Through the PF mechanism, the state space
sampling points satisfying the target state’s prior distri-
bution are transferred to the posterior distribution. Then
the posterior probability samples are updated through
Gaussian condensation to update the state variance,
thus effectively solving the problem of sampling point
degradation.

3) Given the cumulative error effect of Bayesian recursive
filter, this study proposes a GCF based on collabora-
tive constraints to optimize PF. Effectively improve the
information fusion in the cooperative network.

The remainder of this article is organized as follows.
Section II formulates the problem. Section III proposes a
multiobjective cooperative GCF (CGCF). Section IV presents
the simulation results. Section V summarizes the article.

II. PROBLEM DEFINITION

This section mainly describes the multitarget-tracking
problem in 2-D scenarios as a case study to evaluate the
algorithm’s performance. This study considers that the tar-
get node can obtain intranode inertial and internode distance
measurements. First, the multitarget dynamic model and sen-
sor measurement model under cooperative conditions are
established to perform multitarget tracking.

A. Dynamic Model

Fig. 1 shows the dynamic model-building process of the
target node. Define that the cooperative network contains M
moving target nodes. � = {1, 2, . . . , M} represents the set of
target nodes. Assuming that each target node walks randomly
in 2-D coordinates under discrete time tk(k ∈ [0, K]). Define
Xk,i ∈ R

3 as the state information of target node i at time tk,
including position information Pk,i = [pxk,i, pyk,i]T and speed
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information Vk,i, then Xk is expressed as

Xk =
[
Pk,1:M, Vk,1:M

]T
. (1)

For the time series changes, considering that the motion law
of the target node conforms to the dynamic random walk pro-
cess, the state of the target node is modeled according to the
state information at the last moment and the heading angle
measurement and estimation method. The state Xk,i of the tar-
get node i at time tk transfers to the state Xk+1,i at time tk+1,
and establish the following dynamic model:

Xk+1,i =
⎡

⎣
pxk+1,i

pyk+1,i

Vk,i

⎤

⎦ = F

⎡

⎣
pxk,i

pyk,i

Vk,i

⎤

⎦+ Gδk. (2)

Among them, the state transition matrix is expressed as:

F =
⎡

⎣
1 0 �tcosθ̂k,i

0 1 �tsinθ̂k,i

0 0 1

⎤

⎦, G =
⎡

⎣
�t/2 cos θ̂k,i

�t/2 sin θ̂k,i

1

⎤

⎦.�t

represents the sampling time interval, and θ̂k,i means the head-
ing angle of the target node i at time tk. To reduce the
computational complexity of multitarget tracking, as argued
in [9] and [11], δk is a Gaussian random variable with zero
mean and covariance γ 2, that is δk ∼ N(0, γ 2).

B. Measurement Model

The distance measurement sensor outside the node and the
inertial measurement sensor inside the node measures the mea-
surement value during the state transition of the target node.
Usually, an accelerometer measures the acceleration, and inte-
grating the acceleration can measure the step size information
during the transfer process of the target node. The step size
estimate is expressed as

l̂k,i = lk,i + η1,k. (3)

Among them, lk,i represents the real distance that the moving
target node i is transferred from the position (pxk,i, pyk,i) at
time tk to the position (pxk+1,i, pyk+1,i) at time tk+1, that is

lk,i =
√(

pxk+1,i − pxk,i
)2 + (

pyk+1,i − pyk,i
)2

. (4)

And n1,k is the step noise obeying a Gaussian distribution.
Accordingly, l̂k = [l̂k,1, l̂k,2, . . . , l̂k,m]T reflects the step size
information of M target nodes at time tk. The gyroscope mea-
sures the angular velocity, and the heading angle during the
transfer of the target node can be obtained by integrating the
angular velocity. The angle estimate is expressed as

θ̂k,i = θk,i + η2,k (5)

where θk,i is the actual horizontal angle, namely

θk,i = arctan
pyk+1,i − pyk, i

pxk+1,i − pxk,i
(6)

where n2,k is the angular noise following a Gaussian distribu-
tion, θ̂k = [θ̂k,1, θ̂k,2, . . . , θ̂k,m]T reflects the angle information
of M target nodes at time tk. Therefore, Zk = [l̂k, θ̂k] is
defined as the inertial measurement inside the node. That is,

the measurement model of the inertial measurement sensor is
expressed as follows:

Zk = h(Xk, ϑk) (7)

where h represents the nonlinear measurement function and
ϑk represents the measured deviation value. The distance mea-
surement d̂k,ij between target nodes at time tk obtained by the
TOA ranging method is estimated as

d̂k,ij = dk,ij + η3,k (8)

where d is the actual distance between the target nodes i and
j, namely

dk,ij =
√(

pxk,i − pxk,j
)2 + (

pyk,i − pyk,j
)2 (9)

where n3,k is the distance noise obeying a Gaussian distri-
bution, accordingly, Sk = {d̂k,ij|j ∈ {1, . . . , M}\{i}} reflects
the distance information between the target node i and other
M−1 target nodes at time tk, that is, the distance measurement
outside the node.

III. COOPERATIVE GAUSSIAN CONDENSATION FILTER

In this section, we first describe a GCF based on particle
flow to complete the temporal filter estimation of target nodes.
Second, a GCF based on cooperatively constrained particle
flow is introduced to realize multitarget cooperative tracking.

A. Gaussian Condensation Filter Based on Particle Flow

Under nonideal conditions, this article uses GCF for state
estimation to solve the nonlinear problem of the measurement
model. However, there is a defect in sampling point degrada-
tion in the prediction and update process of GCF. This study
proposes a GCF based on PF to solve this problem. The PF
represents the continuous change process from the sampling
point of the prior distribution to the posterior distribution.
In this section, we first introduce the fundamental idea of
GCF, describe the “flow” of sampling points, and introduce
GCF based on PF to obtain high-precision state estimation
information.

1) Gaussian Condensation Filter: GCF [17] provides a
way to recursively generate the posterior probability density
function of the target state. The algorithm estimates the state
of the target node and identifies the unknown parameters of the
Gaussian mixture model, including three stages of prediction,
update, and Gaussian condensation. In the prediction stage, the
state prediction of the current moment is carried out accord-
ing to the prior knowledge of the previous moment. In the
update phase, the predicted state is updated by the mea-
sured value according to the observation equation, and the
posterior estimate of the current moment is obtained. In the
Gaussian condensation stage, considering the nonlinearity of
the measurement model, the posterior probability density func-
tion is first approximated using a Gaussian mixture model.
Then this Gaussian mixture distribution is used for target state
estimation.

1) Prediction: Assume that the target node performs state
transition based on the first-order Markov model, that
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is, p(Xk|X1:k−1) = p(Xk|Xk−1) is satisfied. At time
tk, the prior probability distribution p(Xk|Z1:k−1) of
the target node state can be obtained by the high-
dimensional integral of the product of the system state
equation p(Xk|Xk−1) and the prior probability distri-
bution p(Xk−1|Z1:k−1) at the last moment. However,
for non-Gaussian systems, computing the integral is
extremely complicated. Only when the posterior proba-
bility density function of the last moment is a Gaussian
distribution or a Dirac function can the analytical solu-
tion of the prior probability density function of the
current moment be obtained. That is also the property
used by the Kalman filter and particle filter. In addition,
according to the central limit theorem, any statistical
distribution can be approximated as a Gaussian mixture
distribution, and the number of branches of the Gaussian
mixture distribution is much smaller than that of the
Dirac function [18]. Since the dynamic model is usu-
ally a Gaussian system model, the prediction step can
be computed in closed form. Based on this, this study
considers the target motion tracking problem under the
system state equation to be linear, and the posterior
probability distribution is a Gaussian mixture model,
namely

p̂(Xk−1|Z1:k−1) =
m∑

i=1

αiN
(

Xk−1;μ(i)
k−1|k−1, Q(i)

k−1|k−1

)
.

(10)

The formula for the prediction stage is expressed as

p̃(Xk|Z1:k−1) =
m∑

i=1

αiN
(

Xk;μ(i)
k|k−1, Q(i)

k|k−1

)
(11)

where μ
(i)
k|k−1 = Fμ

(i)
k−1|k−1 and Q(i)

k|k−1 =
FQ(i)

k−1|k−1FT + γ 2 are the mean and covariance
of the predicted state, m is the number of mixture
Gaussian kernels, and γ 2 is the variance of the process
noise δk.

2) Update: The posterior probability density function is
updated by the inertial measurement Zk obtained at
time tk. As shown in Fig. 2, since the likelihood func-
tion p(Zk|Xk) defined by the measurement model h(Xk)

is nonlinear, the updated posterior probability distribu-
tion p̃(Xk|Z1:k) does not belong to the Gaussian mixture
model. According to (11), the formula for the update
phase is expressed as

p̃(Xk|Z1:k) ∝ p(Zk|Xk)

m∑

i=1

αiN
(

Xk;μ(i)
k|k−1, Q(i)

k|k−1

)
.

(12)

3) Gaussian Condensation: For nonlinear filter algorithms,
the number of sufficient statistics describing the actual
posterior distribution increases over time [19]. To avoid
this, we aggregate the accurate posterior probability dis-
tribution into a Gaussian mixture model based on a
closed-form idea. Therefore, one can iterate using expec-
tation maximization (EM) [20] estimation to obtain a

Fig. 2. GCF based on PF flow.

Algorithm 1 GCF
1. Input: p̃k ← True Posterior Probability Distribution
2. Output: {λk, p̂k} ← Gaussian Mixture Distribution
3. q(X, λ0) =∑m

i=1 α
(0)
i N(X;μ(0)

i ,
∑(0)

i )

4. Initialization Parameters: λ0 = (α
(0)
1 , . . . , α

(0)
m , μ

(0)
1 ,

. . . , μ
(0)
m ,

∑(0)
1 , . . . ,

∑(0)
m )

5. DO
6. FOR i← 1 : m DO

7.
f (X)=α

(l)
i N

(
X;μ(l)

i ,
∑(l)

i

)
p̃k

∑m
i=1 αN

i

(
X;μ(l)

i ,
∑(l)

i

)

8. C = sum(f (X))

9. α
(l+1)
i = C

10.
μ

(l+1)
i =sum(Xf (X))

C

11.
∑(l+1)

i =sum((X−μ
(l+1)
i )(X−μ

(l+1)
i )T f (X))

C
12. ENDFOR
13. WHILE λ(l+1)! = λ(l)

14. p̂k =∑m
i=1 α

(l+1)
i N(X;μ(l+1)

i ,
∑(l+1)

i )

Gaussian mixture distribution q where the true poste-
rior probability distribution p minimizes the KL diver-
gence [21]. The Gaussian condensation algorithm is
described in Algorithm 1.

2) Particle Flow: To solve the defect of sampling point
degradation in GCF, this study calculates the posterior proba-
bility of the target state based on the Bayesian formula to real-
ize the update process. The PF is used to describe the change
process from the prior distribution to the posterior distribution
by constructing the homotopy function. The PF velocity field is
obtained according to the Fokker–Planck equation describing
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the probability distribution and then calculated by numerical
integration test distribution samples.

Assuming that the posterior probability distribution of the
target node is represented by N sampling points {xi

k−1}Ni=1 at
time tk−1, after the state of the sampling points is predicted by
the dynamic model, we can obtain the sampling points {x̃i

k}Ni=1
that represent the prior distribution at time tk. Further, in this
study, these sampling points that satisfy the prior distribution
of the target node state are moved to the corresponding pos-
terior distribution through PF. We denote ηϑ as the change of
the target state with the time interval ϑ ∈ [0, 1], while denot-
ing the change of the state at the ith sampling point by ηi

ϑ and
ηi

0 = x̃i
k.

In the update stage, this study calculates the posterior prob-
ability function of the sampling point p(ηi

ϑ |Z1:K) based on the
Bayesian formula, which is expressed as

p
(
ηi

ϑ | Z1:K
) = p

(
ηi

ϑ | Z1:k
)
p
(
Zk | ηi

ϑ

)

p(Zk | Z1:k−1)
. (13)

Denote g(ηi
ϑ) the prior probability density, denote the likeli-

hood function p(ηi
ϑ | Z1:k), and h(ηi

ϑ) construct the homotopy
function p(Zk | ηi

ϑ) from (13)

p
(
ηi

ϑ , ϑ
) = g

(
ηi

ϑ

)
h
(
ηi

ϑ

)ϑ

∫
g
(
ηi

ϑ

)
h
(
ηi

ϑ

)ϑ
dηi

ϑ

. (14)

Taking the natural logarithm of (14), we get

ln p
(
ηi

ϑ , ϑ
) = ln g

(
ηi

ϑ

)+ ϑ ln h
(
ηi

ϑ

)− ln K(ϑ) (15)

where K(ϑ) = ∫
g(ηi

ϑ)h(ηi
ϑ)ϑdηi

ϑ represents a state-
independent normalization factor. When ϑ changing continu-
ously from 0 to 1, p(ηi

ϑ , ϑ) represents the probability density
function of the sampling point i in the process of changing
from the prior distribution (ϑ = 0) to the posterior distribution
(ϑ = 1). Assuming that the PF obeys the stochastic differen-
tial equation, the rate of change of the state at the sampling
point ηi

ϑ is

dηi
ϑ

dϑ
= ζ

(
ηi

ϑ , ϑ
)+ dσ

dϑ
(16)

where ηi
ϑ the velocity field representing the smooth movement

of sampling points from the prior distribution to the posterior
distribution, and ϑ is process noise.

Suppose the process noise is 0, and p(ηi
ϑ , ϑ) satisfies the

Fockker–Planck equation of the zero diffusion term, namely

∂p
(
ηi

ϑ , ϑ
)

∂ϑ
= −div

(
ζ
(
ηi

ϑ , ϑ
)
p
(
ηi

ϑ , ϑ
))

(17)

where div indicates the divergence. Therefore, after calculating
ζ(ηi

ϑ , ϑ) from the above formula, the sampling points that
satisfy the posterior distribution are obtained by integrating
ζ(ηi

ϑ , ϑ) from 0 to 1. The localized exact Daum and Huang
(LEDH) filter algorithm obtain the analytical solution of the
velocity field for each sampling point. For the ith sampling
point, the PF velocity field is expressed as

ζ
(
ηi

ϑ , ϑ
) = Ai(ϑ)ηi

ϑ + bi(ϑ) (18)

Ai(ϑ) = −1

2
QHiϑT(

ϑHiϑQHiϑT + R
)−1

Hi(ϑ) (19)

Algorithm 2 Particle Flow

1. Input: {xi
k−1}Ni=1 ← N sampling points at time tk−1

2.{Q(n)
k }mn=1 ← Prediction covariance

3. Output: {ηi}Ni=1 ← N sampling points at time tk
4. FOR i = 1, N DO
5. η̄i

0 = f1(xi
k−1, 0)← State Transition Function

6. ηi = f1(xi
k−1, δ)k

7. η̄i = η̄i
0

8. ENDFOR
9. ϑ = 0
10. FOR j = 1 : Nϑ DO
11. ϑ = ϑ + ξj

12. FORi = 1 : N DO
13. Hi(ϑ)=∂h(η̄i,0)

∂η̄i ← Observation Matrix

14. ei(ϑ) = h(η̄i, 0)− Hi(ϑ)η̄i ← Truncation error
15. Ai(ϑ) = − 1

2 QHiϑT(ϑHiϑQHiϑT + R)−1Hi(ϑ)

16. bi(ϑ) = (I+ 2ϑAiϑ)[I+ϑHiϑQHiϑTR−1(Zk − ei(ϑ))+
Aiϑη̄0

i]
17. η̄i = η̄i + εj(Ai

j(ϑ)η̄i + bi
j(ϑ))

18. ηi = ηi + εj(Ai
j(ϑ)ηi + bi

j(ϑ))

19. ENDFOR
20. ENDFOR

bi(ϑ) = (
I + 2ϑAiϑ

)

×
[
I + ϑHiϑQHiϑTR−1(Zk − ei(ϑ)

)+ Aiϑη̄0
i
]

(20)

where Q represents the covariance of the predicted state, I
represents the identity matrix. H represents the measurement
equation linearized by the nonlinear function h at ηi

ϑ , that is,
Hi(ϑ) = ([∂h(η, 0)]/∂η)|η = ηi

ϑ , h(ηi
ϑ , ν) ∼ N(Hηi

ϑ , R) and
ei(ϑ) = h(ηi

ϑ , 0) − Hi(ϑ)ηi
ϑ , and η̄0

i represent the sampling
point i when the process noise is zero through the dynamic
state of the model after transfer. Only when the prior distri-
bution g(ηi

ϑ) and the measurement function h(ηi
ϑ) are both

Gaussian distributions can the exact solution of the particle
flow velocity field be obtained. But LEDH filter relies on
an extended Kalman filter or UKF to calculate PF veloc-
ity field. When the measurement model is highly nonlinear,
the performance of the traditional Kalman filter is not good.
Therefore, we propose a GCF based on PF, which uses a
Gaussian mixture distribution to approximate the posterior dis-
tribution of the target node state to obtain the updated state
covariance. The PF algorithm is detailed in Algorithm 2.

3) Gaussian Condensation Filter Based on Particle Flow:
This study proposes a GCF algorithm based on PF, and the
algorithm flowchart is shown in Fig. 2. Assume that the pos-
terior probability distribution {μ(n)

k−1, Q(n)
k−1}mn=1 approximates

a Gaussian mixture distribution {xi
k−1}Ni=1 at time tk−1. In the

prediction stage, the state of the sampling point at the current
moment is predicted according to the dynamic model, and
the mean and variance {μ(n)

k , Q(n)
k }mn=1 of the predicted state

is obtained. In the update stage, the posterior samples can be
obtained from the prior samples by solving the velocity field
through the PF mechanism. Therefore, we can get the sampling
point {xi

k}Ni=1 that obeys the posterior distribution of the state of
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Algorithm 3 PF-GCF
1. Input: [X0]← Initial position
2. Output: {X̂k}Kk=1 ← The estimate of state
3. Initialization Parameters: {x0}Ni=1 ∼ p̂0 ← The prior distri-
bution of X0 and p̂0 ∼ N(μ0, Q0)

4. FOR k = 1 : K DO
5. FOR n = 1 : m DO
6. μ

(n)
k = Fμ

(n)
k−1

7. Q(n)
k = FQ(n)

k−1F + γ 2

8. ENDFOR
9. IF xi

k−1 ∼ N(μ
(n)
k−1, Q(n)

k−1) THEN
10. {xi

k}Ni=1 ← PF({xi
k−1}Ni=1, {Q(n)

k }mn=1)� Algorithm: Particle
Flow
11. ENDIF
12. X̂k = 1

N

∑n
i=1 xi

k�The estimate value of state
13. p̂k ← GCF({xi

k}Ni=1) � Algorithm: Gaussian Condensation
Filter

the target node. Then use the state mean X̂k = (1/N)
∑N

i=1 xi
k

of the sampling points as the estimated value of the target
node’s state at time tk to obtain its position in the time series.

Considering the infinite increase of sufficient statistics to
describe the true posterior p̃ with time series changes, we
approximate p̃ to a Gaussian mixture distribution p̃ using
Gaussian condensation theory. It uses EM to estimate the
unknown parameters in the Gaussian mixture model to obtain
the updated state covariance. The Gaussian condensation
algorithm based on PF is described in Algorithm 3.

B. Co-Optimization Method Based on Distance Constraints

Bayesian estimation is to predict and update the posterior
probability density distribution recursively, and the state esti-
mation bias of previous moments affects the state estimation
of subsequent moments. To effectively reduce the influence
of the cumulative positioning error, this study integrates the
distance measurement information between target nodes for
co-location estimation. In the co-location tracking method, the
Bayesian optimization method under the distance constraint is
used in this study to optimize the estimation of the target
node state. The GCF based on error elliptic PF will output
the mean and covariance of the target node state at each
moment. This information is used as the input of the con-
strained optimization estimation. Under the distance constraint
of the given target node state, this study uses the determin-
istic sampling approximation. Calculating the integral obtains
the posterior conditional mean and covariance to realize the
multitarget tracking under the distance constraint.

In this study, the Gaussian filter algorithm based on error
ellipse PF is used to estimate the state of the mobile node,
and the target node obtains the information gain of the iner-
tial sequence data in time. Next, we use the distance between
the two target nodes as mutual information to suppress
the influence of cumulative errors in single-target tracking,
thereby achieving higher precision multitarget co-location. The
algorithm flowchart is shown in Fig. 3.

Fig. 3. PF-GCF.

For single-target tracking, during the resampling stage, par-
ticle flow-based GCF (PF-GCF) could be further improved
by our previous method [14], contributing to the error-elliptic
particle flow-based GCF (EPF-GCF). First, input the initial
position information of the target node and complete the initial
generation of sampling points. Second, the dynamic model pre-
dicts the state of the sampling points. The PF velocity field is
calculated according to the variance {Q(n)

k }mn=1 of the predicted
state. These sampling points are smoothly migrated from the
prior distribution to the posterior distribution by integrating the
velocity field from 0 to 1. Then, according to the state esti-
mated value of “flowing” to the sampling points of the posterior
distribution as the center point (xp, yp) of the sampling point
set. Given an error ellipse with a confidence level of 3σ , the
abnormal sampling points outside the error ellipse are directly
discarded. In the ellipse, the corresponding number of sam-
pling points is selected for copying to ensure that the sample
size of the corrected sampling points is conserved. Finally, the
Gaussian condensation method is used to iterate continuously
until the optimal solution of the parameters in EM is reached,
and the covariance of the updated state is obtained to complete
the rough estimation of the target node state.

In the multitarget-tracking process, the state estimation
of GCF based on error elliptical PF will be used as the
input of distance-constrained optimization. In the collabo-
rative network, the target node establishes a distance con-
straint c based on its prior knowledge at the last moment
and the distance information between nodes. It obtains the
estimated value ûr|c of the state through the distance con-
straint optimization algorithm, which is closer to the actual
state vector. Therefore, this study considers using the state
estimation after the distance constraint optimization to con-
struct the error ellipse. That is, the state estimation ûr|c
after the constraint optimization is used to update the cen-
ter point (xp, yp) of the error ellipse at the next moment.
Then the GCF estimation at the next moment can obtain at
the last moment. The gain of distance information at a time
can realize high-precision multitarget co-location based on
IMU/TOA information fusion. For a detailed description of
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Algorithm 4 CCPF-GCF
1. Input: [X0]← Initial position
2. Output: {ûr1|c}Kk=1 ← The estimate value of state
3. Initialization Parameters: {x0}Ni=1 ∼ p̂0 ← The prior distri-
bution of X0 and p̂0 ∼ N(μ0, Q0)

4. FOR k = 1 : K DO
5. FOR n = 1 : m DO
6. μ

(n)
k = Fμ

(n)
k−1

7. Q(n)
k = FQ(n)

k−1F + γ 2

8. ENDFOR
9. IF xi

k−1 ∼ N(μ
(n)
k−1, Q(n)

k−1) THEN
10. {xi

k}Ni=1 ← PF({xi
k−1}Ni=1, {Q(n)

k }mn=1)� Algorithm: Particle
Flow
11. ENDIF
12. X̂k = 1

N

∑n
i=1 xi

k ←The estimate value of state
13. {xi

k}Ni=1 ← EEO({xi
k}Ni=1, (xp, yp))� Algorithm: Error

Ellipse Optimization
14. p̂k ← GCF({xi

k}Ni=1) � Algorithm: Gaussian Condensation
Filter
15. u1 = X̂k, C1 = cov({xi

k}Ni=1)� The mean and variance of
current sampling time
16. ur = [u1, u2]T , Cr = [C1, C2]T

17. ûr1|c, Ĉr1|c, Ĉr2|c ← DCO(ur, Cr, S12)� Distance con-
strained optimization
18. (xp, yp) ← f1(μ̂r1|c)� Update the estimate center of next
sampling time
19. ENDFOR

the error ellipse and distance-constrained optimization algo-
rithms, please refer to [22]. The multiobjective cooperative
Gaussian condensation description is shown in Algorithm 4.

IV. NUMERICAL SIMULATION AND ANALYSIS

A. Experimental Environment and Parameter Settings

In the simulation stage, this article conducts the position-
ing and tracking experiment of target node walking based on
MATLAB. The personal computer hardware is configured as
a 4-core Intel i5 CPU and 8-GB RAM, and the operating
system is Win 10 Home Edition 64-bit. Set the motion scene
of the target node as a square area with a length of 50 m
and a width of 50 m. To ensure that the motion law of the
mobile node conforms to the dynamic random walk process,
the initial position (x0, y0) and the motion heading angle θ

of the target node of each experiment are randomly set. And
100 steps are randomly traveled within a 2-D scene of 50 m
× 50 m. The experimental parameters of location tracking are
shown in Table I.

B. Algorithm Performance Statistics and Analysis

In this article, a GCF algorithm based on PF is proposed to
estimate the system state effectively to improve the position-
ing accuracy of the nonlinear filter algorithm in single target
tracking. To verify the high precision and stability of proposed
algorithms, this study uses UKF, particle filter, GCF, PF-
GCF, and EPF-GCF to conduct single-target tracking. Repeat

TABLE I
EXPERIMENTAL PARAMETER SETTINGS

Fig. 4. RMSE distribution of different algorithms for single target tracking.

the above algorithms 100 times, and calculate the root mean
square error, defined as

RMSE =
√√√
√ 1

K

K∑

i=1

e2. (21)

Fig. 4 shows different positioning algorithms’ root mean
square error distribution under single target tracking. From
the statistics of the results, we can see that

1) The simulation result of the UKF is poor, and there is a
significant oscillation phenomenon. The root mean square
error distribution of the particle filter and GCF is close,
but the GCF is more stable and has higher positioning
accuracy. This shows that the GCF algorithm has the
advantage of improving the localization performance in
dealing with the nonlinearity of the measurement model.

2) The error curve of GCF based on PF is significantly
lower than that of the GCF. Compared with the GCF,
the positioning performance is improved by 36.7%, with
obvious advantages in estimation accuracy and stability.

3) Compared with the GCF based on PF, the GCF based
on error ellipse optimization has a smaller error distribu-
tion. As the iteration progresses, the EPF-GCF algorithm
suppresses the influence of the previous error to a certain
extent. This proves that the algorithm described in this

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on July 27,2023 at 05:22:58 UTC from IEEE Xplore.  Restrictions apply. 



13540 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 15, 1 AUGUST 2023

Fig. 5. RMSE CDF of different algorithms for single target tracking.

article can effectively improve the positioning accuracy
of single-target tracking.

The cumulative distribution function curves of the root mean
square error of different algorithms under single target tracking
are shown in Fig. 5. The following conclusions can be drawn
from the analysis of the figure: the positioning accuracy of
the GCF is higher than 0.9 m. The GCF based on PF has
a 52% probability of being lower than 0.7 m. The GCF of
PF is optimized based on the error ellipse. The positioning
accuracy of the algorithm has a 90% probability lower than
0.7 m, which also verifies the effectiveness of the GCF based
on error ellipse optimization PF in single target tracking.

The multitarget cooperative tracking algorithm fuses the
distance information gained between nodes to obtain higher
precision positioning and tracking. To verify the effective-
ness of the GCF based on cooperatively constrained particle
flow in target tracking, this study uses the cooperative particle
filter (CPF), the CGCF, and the cooperative constrained par-
ticle flow-based GCF (CCPF-GCF) repeats 100 random walk
experiments and counts the root mean square error, defined as

CRMSE = 1

M

M∑

i=1

√√√√ 1

K

K∑

j=1

e2. (22)

Then, to further verify the advancement of the algorithm
proposed in this article in target tracking, the error distributions
of the above algorithms are compared with the collaborative
PCRLB with the same measurement noise. The statistics of
the results are shown in Fig. 6.

Fig. 6 shows different algorithms’ root mean square error
distribution under multitarget tracking. The following conclu-
sions can be obtained from the result statistics.

1) The synergistic root means square error curves of
the above-mentioned collaborative algorithms are rel-
atively stable, which indicates that the multiobjective
collaborative technology effectively integrates the posi-
tion information of a single target and verifies that
the multiobjective collaborative algorithm has higher
stability.

2) The positioning accuracy of the CPF algorithm is
0.39 m, the positioning accuracy of the CGCF algorithm

Fig. 6. CRMSE distribution of different algorithms for multitarget tracking.

Fig. 7. CRMSE CDF of different algorithms for multitarget tracking.

is 0.32 m, and the positioning accuracy of the CCPF-
GCF algorithm is 0.2 6m. Compared with CGCF, CCPF-
GCF has higher positioning accuracy, and the root means
square error curve of the CCPF-GCF algorithm is closer
to that of the collaborative PCRLB. The effectiveness of
the proposed GCF based on cooperative constrained PF
in cooperative motion tracking is verified.

Fig. 7 shows the cumulative distribution function curve of
different algorithms’ root mean square error under multitar-
get tracking. From the analysis of the figure, the positioning
accuracy of CPF is below 0.45 m, the positioning accuracy
of CGCF is below 0.35 m, and the positioning accuracy of
CCPF-GCF is 0.3 m. This also verifies that the CCPF-GCF
algorithm proposed in this article can achieve higher precision
multitarget cooperative tracking.

This study uses the nonlinear filter for single-target and
co-location simulation experiments. Table II summarizes the
positioning error and execution time of different algorithms.
The following conclusions can be drawn from the table.

1) In the single-target tracking algorithm, GCF can achieve
a positioning accuracy of 1.12 m in single-target track-
ing. Compared with the UKF and PF algorithms, the
GCF algorithm has higher positioning accuracy. Second,
GCF’s running time is higher than UKF due to the
iterative solution required by the GCF algorithm in
the Gaussian condensation stage. However, the running
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TABLE II
POSITIONING ACCURACY OF DIFFERENT ALGORITHMS (4000 SAMPLING POINTS)

time of GCF is lower than that of PF, which indi-
cates that GCF is computationally less expensive in
high-dimensional states.

2) Compared with the GCF algorithm, PF-GCF provides
higher positioning accuracy and minor variance, which
proves that PF-GCF effectively improves the problem
of sampling point degradation. EPF-GCF can achieve a
positioning accuracy of 0.62 m in single target track-
ing. Since the error ellipse optimization needs to filter
the sampling points, the running time of the EPF-GCF
algorithm is slightly higher. Still, it is entirely acceptable
for real-time applications.

3) In the multitarget cooperative tracking algorithm, CCPF-
GCF can achieve a positioning accuracy of 0.26 m.
CCPF-GCF dramatically improves positioning accuracy
and stability than the single target-tracking algorithm.

C. Effect of Parameter Settings on Algorithm Performance

To further analyze the influence of the number of sampling
points on the localization performance of different algorithms,
this study uses particle filter, PF GCF (PF-GCF), and error
ellipse optimization PF GCF algorithm (EPF-GCF) for simu-
lation experiments. The positioning accuracy of the algorithm
is represented by the root mean square error. In addition, the
effect of the number of sampling points on the execution time
of different filter is compared, and the statistics of the results
are shown in Fig. 8. The following conclusions can be drawn
from the figure. As the number of sampling points increases,
the positioning error gradually decreases, but the time cost
increases linearly when the number of sampling points is less
than 4000. As the number of sampling points increases, the
algorithm’s accuracy is improved. When the number of sam-
pling points is more significant than 4000, with the rise in the
number of sampling points, the change of the positioning error
is relatively stable. Therefore, considering the marginal cost of
positioning accuracy and execution efficiency, an appropriate
number of sampling points should be selected.

Next, we discuss the effect of noise variance on the
localization performance of the algorithm. Selecting differ-
ent measurement noise covariances, using particle filter, GCF,
PF-GCF, and the proposed error ellipse optimization parti-
cle flow-based GCF (EPF-GCF) algorithm repeat 100 random
walk experiments, and the statistics of the results are shown
in Fig. 9. The figure shows that the positioning error increases

Fig. 8. Influence of the number of sampling points on the localization
performance of the algorithm.

Fig. 9. Influence of noise variance on localization performance of the
algorithm.

with noise variance. Compared with the contrast filter, EPF-
GCF has higher accuracy and is less affected by the noise
variance.

To analyze the influence of the number of target nodes on
the performance of different algorithms, simulation results are
shown in Fig. 10, from which it can be seen that:

1) With the increase of target nodes, the positioning
error of CCPF-GCF changes more smoothly and accu-
rate. Therefore, when the number of targets is large,
CCPF-GCF is effective and suitable for large-scale
deployment applications.
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Fig. 10. Influence of the number of target nodes on the algorithm’s
performance.

2) With the increase of target nodes, the execution time of
the above algorithms gradually increase, and the execu-
tion time of CCPF-GCF is slightly higher than those of
comparison algorithms. Still, it can meet the real-time
requirements of general systems.

V. CONCLUSION

For the nonlinear problem of the measurement model faced
by multitarget tracking, a Gaussian condensation algorithm
is proposed in this article. In the Gaussian condensation
stage, the unknown parameters of the mixture Gaussian model
are adjusted by a recursive, iterative method. The Gaussian
mixture model approximates the actual posterior probability
distribution. Aiming at the problem of sampling point degra-
dation in GCF, this article proposes a GCF based on particle
flow. The particle flow mechanism completes the Bayesian
estimation by constructing a homotopy function. These sam-
pling points are smoothly moved from the prior distribution in
the state space to the posterior distribution in the state space.
Compared with other nonlinear filters, the experimental results
show that our proposed CCPF-GCF algorithm can effectively
solve the nonlinear problem of the measurement model in the
high-dimensional state and deal with the defect of sampling
point degradation. Compared with EPF-GCF, the localization
accuracy of CCPF-GCF is improved by 58.1%. Compared with
CPF, the accuracy of CCPF-GCF is enhanced by 33.3%.

Promising directions for future research are to improve the
dynamic model uncertainty. The dynamic model is generally
considered a Gaussian model to reduce the computational
complexity of multitarget tracking. Even though based on
the non-Gaussian hypothesis, it generally needs to reduce the
dimensionality of the multitarget tracking process by mapping
it to Gaussian space for computation due to the complexity
of data association. This article focuses on the measurement
model issue, but we may focus on generalizing the dynamic
model using numerical methods in our future study.
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